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Investigation of a Charge-transfer Substituent Constant Using Computational 
Chemistry and Pattern Recognition Techniques 

David J. Livingstone," David A. Evans and Martin R .  Saunders 
SmithKline Beecham Pharmaceuticals, The Frythe, Welwyn, Herts A L 6 9AR, UK 

Using the techniques of computational chemistry, a set of 58 parameters were calculated for 43 mono- 
substituted benzenes. Substituent constant values, K ,  derived from the measurement of  formation 
constants of  charge-transfer complexes are available for 38 of these compounds. Relationships 
between K and the calculated descriptors have been investigated using a variety o f  multivariate 
statistical techniques. Unsupervised analysis by two methods showed groupings of  similar 
substituents and a tendency to order the compounds according to their K values. It has been 
shown that K can be predicted using these parameters but the different multivariate methods yielded 
different results. Partial least squares and principal components regression both tended to 
underpredict K values whereas simple linear regression equations under- or over-predicted depending 
on the number of  terms included. Examination of the descriptors involved in the correlations has 
shown that electronic effects are relatively unimportant in these complexes and that bulk and 
hydrophobicity parameters are most useful for the description of K .  

A substituent constant, K ,  has been reported ' g 2  which was 
proposed to measure the influence of substituents on the form- 
ation of charge-transfer complexes. Perhaps such complexes are 
better termed Electron-Donor-Acceptor (EDA) complexes since 
a charge-transfer band is not always observed in their spectra, 
particularly for the weaker complexes, and since it has been 
argued that transfer of electronic charge makes only a small 
contribution to the forces which stabilize their ground state.3 
Indeed, in the original study and the work reported here it 
would appear that electronic factors make only a small 
contribution to the description of K .  This substituent constant 
was suggested as a measure of EDA effects since it was derived 
from NMR determination of the formation constants of weak 
EDA complexes. It was intended for use in the quantitative 
description of the biological effects of compounds using the 
approach known as Quantitative Structure-Activity Relation- 
ships (QSAR) pioneered by H a n ~ c h . ~  This involves the evalu- 
ation of a correlation equation, such as that shown below, in 
which substituent effects are represented by linear free energy 
related parameters describing hydrophobic (n), electronic (a) 
and steric (E,)  effects: 

log 1/C = an + ba + CE, + d ( 1 )  

where C is the dose to produce a given effect and the coefficients 
a, b, c and d are usually estimated by a least-squares fit. This 
approach has been extended considerably over the last thirty 
years by the consideration of numerous other descriptors of 
molecular properties ' ~ 3  and by the application of other 
methods of data a n a l y ~ i s . ~ , ~  

More recently, computational chemistry, in the form of 
molecular mechanics and quantum mechanics, has been seen as 
an alternative to QSAR for drug design. This has been aided by 
the rapid evolution of hardware and the increasing availability 
of 'user friendly' software. However, most applications of 
computational chemistry have involved the use of a graphics 
system in order to display lo  and overlay structures.' Such 
examples might be properly described as Structure-Activity 
Relationships since they make use of the structure of the test 
molecules but tend not to use quantitative descriptions of 
molecular properties. Computational chemistry and QSAR 
should not be viewed as alternatives; they are, in fact, 
complementary.12 For example, there are reports in which a 

regression equation has been rationalised in terms of the fit of an 
inhibitor to an enzyme as determined by X-ray crystal- 
lography.' 3-1 There are also examples in which parameters 
derived from computational chemistry have been used in 
attempts to correlate biological activity. The choice of such 
descriptors has often been based on some mechanistic rationale 
but it is also possible to adopt a systematic approach in which all 
possible parameters for a data set are calculated.'6-'8 

One of the advantages of this method is that it is possible to 
calculate a very large number of parameters which can be used 
to describe physicochemical properties. Indeed, in terms of 
charge properties alone it is possible to create several times as 
many descriptors as there are atoms in a molecule. Such data 
sets are expected to contain some very detailed information 
although they also contain a considerable degree of redun- 
dancy.18,19 One of the problems with this approach is that the 
large data matrices call for methods of analysis other than 
multiple regression. Such techniques are readily avail- 
able9,'2,'8*20 although they are perhaps not as well known as 
the various regression methods. Another problem with the use 
of parameters calculated by computational chemistry is that 
there is no general consensus of opinion on which properties 
should be used to represent a molecule, and which are the best 
parameters to represent those properties. This problem also 
occurs to some extent when using the 'traditional' QSAR 
descriptors since although it is generally accepted that para- 
meters are required which represent hydrophobic, steric and 
electronic effects, there are many descriptors which may be used 
to this end.7,8 Perhaps the biggest danger in the use of large 
numbers of parameters lies in the possibility of chance 
correlations. As pointed out by Topliss and co-workers,2 the 
larger the number of variables screened then the higher the 
possibility of a seemingly significant relationship arising by 
chance. 

The utility of parameters based on chemical model systems 
has been demonstrated many times, both as a means of describ- 
ing chemical reactions and also the more complex interactions 
involved in biological systems. If the descriptors calculated by 
computational chemistry methods are to be of value in QSAR 
studies then it ought to be possible to describe simple models of 
chemical interactions using them. There is, of course, nothing 
new in this. A number of studies have been reported of the use of 
semi-empirical methods to calculate acidity constants and 
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hence Hammett-type substituent  constant^.^'-^^ This approach 
has been discussed specifically from the point of view of QSAR 
studies 2 5  and molecular orbital calculations of proton transfer 
involving arnjnes has been proposed as a model of the binding of 
opiates to their receptor.26 

In the work reported here we have examined relationships 
between calculated descriptors and ti substituent constant 
values. An advantage of this over the examples mentioned 
above 22-26 is that the formation of weak intermolecular 
complexes between two small molecules might serve as a better 
model of a drug receptor complex than the simple interaction of 
a proton with an acidic or basic group. In addition, it is possible 
that the examination of a model system such as this using 
theoretical parameters may give some insight into the forces 
responsible for the stabilisation of such complexes. Finally, the 
nature of the data set generated by the molecular modelling 
calculations forces the use of a number of multivariate statistical 
methods. Thus, the results from these analyses allow the 
comparison of a variety of analytical procedures. 

Computational Methods 
The chemical model system involving EDA complexes has been 
described before’.’ so it will only be briefly mentioned here. 
Formation constants were measured using an NMR technique 
for a set of mono-substituted benzene electron donors with a 
common electron acceptor, 1,3,5-trinitrobenzene, in carbon 
tetrachloride solution. Experimental values have been reported 
for 35 substituents, a further three are given here. A substituent 
constant, K ,  was derived from the values of the formation 
constants in an analogous fashion to the Hammett equation, 
but without the reaction constant p, as shown below: 

where K, is the formation constant for an X-substituted donor 
and KH is the formation constant for the unsubstituted parent 
(benzene). Further experimental details are given in the 
references cited. 

All calculations were performed using the COSMIC suite of 
molecular modelling programs. Ov2’ A comprehensive series of 
mono-substituted benzenes was built. Each was geometry 
optimised with molecular mechanics, and the MOPAC 28 

hamiltonian was calculated. Information for the statistical 
treatment was collated using a module in COSMIC designed 
specifically for tasks of this type. The series of molecules is 
considered as a common ‘Tore’ of atoms (up to 32) and a series 
of substituents (up to 12). For each molecule, the program 
records simple geometric data such as maximum and minimum 
dimensions in the Cartesian axes, calculated log P and molar 
refractivity using the MEDCHEM  algorithm^,^' moments of 
inertia, and some wavefunction derived properties such as 
dipole moment and its components, energies of HOMO and 
LUMO obtained from CNDO, MOPAC or ab initio wave- 
functions as available. 

For each atom of the common core of the series, a set of 
wavefunction-derived parameters such as Mulliken charges, self 
atom polarisabilities and superdelocalisabilities are recorded 
from each of the available wavefunctions. For each of the 
substituents, some geometric information, the sum of Mulliken 
charges and the mean square Mulliken charge is recorded, along 
with (where available) a set of physicochemical parameters from 
a suitably formatted lookup table of published substituent 
 constant^.^ We thus have a framework in place which can store 
information based on the whole molecule, information based on 
the substituents, or more generally on arbitrary sections of the 
molecule, and information based on the common core atoms, or 
more generally on individual atoms in the molecule. We are 

currently extending the programme to give us the ability to 
include properties at arbitrary positions around the molecule 
such as electrostatic potential and electric field gradients. 

The program may be run on a single molecule or on a list of 
molecules. The user-defined common core is automatically 
perceived within the molecule, giving the user the opportunity 
to intervene if multiple matches exist, or to override the 
automatic selection. The matching of substituents is treated 
similarly. The various collected and calculated properties for 
each molecule are then stored in a disk file for subsequent 
processing. A companion module takes sets of the property files, 
ascertains which sets of properties are present in all of the files 
and checks for consistency between the files (same number of 
core atoms, same number of substituents). Having established 
the largest complete data set available for the series of 
molecules, the user is offered the option of leaving out sections 
of the dataset. The whole table of raw data is then written out 
either to an RSE (BBN Software products, UK Ltd., Staines, 
Middlesex, UK) table or as a file in the format of the desired 
statistical package. A number of statistical procedures are 
available for the examination of relationships between the 
variables, for example hierarchical cluster analysis, principal 
component analysis and the reduction of redundancy by the 
removal of highly correlated properties. l9 The reduced data set 
can be written to an RSE table or to a disk file. Arbitrary 
experimental information such as biological activity or category 
data for classification procedures can be added at this stage if 
desired, or by manually editing the RSE table. 

Statistical calculations were carried out using RSE, the 
pattern recognition package ARTHUR (Infometrix, Inc, 
Seattle, WA 98 121) and the general purpose statistical package 
GENSTAT (Numerical Algorithms Group, Ltd., Oxford, OX2 
7DE, UK). 

Results and Discussion 
As a result of the molecular modelling calculations, a total of 58 
descriptors were assembled as the raw data set; these are shown 
in Table 1. This preliminary set consisted of parameter values 
for 40 compounds, i.e. the same substituents as reported in 
ref. 2. Due to solubility problems, values of K are available 
for only 35 of these compounds, the remainder can be used 
as a test set. Substituents and their ti values are shown in Table 
2. The first step in the analysis of these data was to remove 
redundancy on the basis of pairwise correlations. This was 
carried out with the preliminary data analysis module of 
COSMIC using a correlation coefficient limit of 0.7 to leave a 
reduced data set of 31 parameters. The variables in this set were 
autoscaled to give ‘new’ variables with a mean of zero and a 
standard deviation of 1 .  This is achieved as shown below, eqn. 
(3), where X’ i j  is the autoscaled value of variablej for compound 

rij = ( X i j  - Zj)/Oj (3) 

i, X i j  is the raw data value, oj and zj are the standard deviation 
and mean, respectively, for variable j .  Autoscaled data are less 
sensitive to outliers and have the advantage when used in 
variance related methods, such as principal components 
analysis, of contributing one unit of variance per variable. A 
two-dimensional display (not shown) of the data points from 
this set using a non-linear mapping showed a 
tendency to group similar substituents together. Further 
examination of this plot also showed that the ti values of the 
substituents increased in one direction along the plot. 

Principal components analysis (PCA) of these data produced 
10 principal components with eigenvalues greater than 1, a 
commonly used criterion to test for the number of ‘significant’ 
components since, for autoscaled data, an eigenvalue of less 
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Table 1 The 58 parameters in the starting data set 

Whole molecule Substit uen t Atom centred 

Moments of inertia in the s, y and 2 Calculated log P" Charge [chge(atom No.)] 
directions (lx, ly and I , )  
Principal ellipsoid axes (PI,  P2 and P3) Self atom polarizability [alp()] 
Calculated log P Minimum and maximum dimensions in the Electrophilic [Fe()] and nucleophilic 

[Fn()] frontier orbital densities 
Calculated molar refractivity Electrophilic [S , ( ) ]  and nucleophilic [Sn()] 

superdelocalizabilities 
Energy of the highest occupied (EHOMO) 
and lowest unoccupied ( ELUMO) molecular 
orbitals 
Dipole moment ( p )  and Components of the 
dipole moment in the x, J' and z directions 

Calculated molar refraction " 

s, y and z directions (.xmin, s,,,, etc.) 

( P x 9  py and P:) 

These two properties are perfectly correlated with the whole molecule quantities since there is no other substitution. 

Table 2 K values for monosubstituted benzenes 

Su bsti t uent K Substituent K 

0.00 
0.1 1 
0.13 
0.04 
0.07 
0.07 

0.45 
0.32 
0.48 
0.48 
0.55 
0.44 
0.39 
0.40 
0.40 

0.23 

- 0.07 

- 0.09 

0.00 
- 0.0 1 

0.0 1 
-0.16 

0.26 
0.66 
0.73 
0.79 
0.39 
0.90 
0.8 1 
0.59 
1.31 
1.31 
1.24 
1.31 
1.33 

Table 3 The 1 1  parameter SELECT set in the order chosen 

Number Quantity 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  

than 1 represents the variance contribution of less than one of 
the original variables (however, see later). These components 
accounted for 88% of the total variance of the data set. A plot of 
the principal components scores (not shown) for the first two 
principal components also showed groupings of similar sub- 
stituents and some classification of the compounds according to 
their K values. 

This unsupervised analysis was encouraging in that it 
appeared that the data did contain information which could be 
used to describe the model system. However, even after the 
preliminary removal of redundant variables the data set still 
contains a large number of descriptors compared with the 
number of data points. One means by which this number can be 
reduced wit'iout the loss of 'useful' information is to use the 

A 

A 

A 

0 0 0  + 
0 0 
0 0  

a a t o A  
a.0 n o  

0 
A 

@ o  
I 

B. 
n 

Dimension 1 

Fig. 1 Non-linear map derived from the 1 1  variable set, substituents 
classified as shown. +, hydrogen; @, alkyl; 0, esters/ethers/carbonyl; 
A, halogen; 0, amine; ., sulfonamides/amides; A, no group. 

ARTHUR routine SELECT to choose parameters on the basis 
of their ability to predict K values. This procedure is similar to 
forward stepping regression except that a decorrelation step is 
involved after the first and subsequent variables are chosen.32 
Although there is the potential danger of chance correlations 2 1  

involved in this approach, it is expected that the use of a number 
of multivariate methods will help to identify chance effects. The 
SELECT procedure, using the 35 substituents with measured 
K values, identified a set of 11 variables which are listed in 
Table 3 in descending order of selection. A non-linear map of 
this set (Fig. 1) shows a quite marked clustering of substituents 
according to their chemical classes with some ordering of K 
values across the diagonal of the plot. 

Analysis of this set by PCA resulted in the explanation of 80% 
of the variance using five principal components. The loadings 
(correlations) of the variables on these components are shown 
in Table 4 along with their eigenvalues (amount of variance 
explained). It can be seen from the table that the fifth 
component has an eigenvalue less than 1 and would thus not 
normally be considered to be important. However, Lukovits 3 3  

demonstrated that a principal component, derived from 
quantum chemical data, with an eigenvalue smaller than 1 (0.52) 
was of importance in the explanation of pharmacological data. 
Examination of the dependence of K on the principal com- 
ponents by forward stepping regression using the PC scores as 
independent variables gave the following equations, (4)-(6): 

K = 0.191 PC1 + 0.453 
R2 = 0.5 F = 33.01 SE = 0.32 

(4) 
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Table 4 Variable loadings” for the first five principal components 
derived from the reduced data set of 11 variables 

Table 6 Variable loadings” for the first three latent variables from PLS 
analysis of 11 variables 

__ 

Component (eigenvalue) Loading on latent variable 

1 (2.73) 2 (2.19) 3 (1.78) 4 (1.23) 5 (0.95) Variable 1 2 3 

Variable Loading 

0.48 -0.34 
- 0.4 1 
-0.36 

0.41 
0.48 

- 0.3 1 
-0.59 

- 0.39 
- 0.40 0.40 

- 0.60 

-0.47 
0.49 

0.33 

0.42 
-0.37 

-0.41 0.60 

0.38 
- 0.38 

“For simplicity, only loadings above 0.3 are shown. 

Table 5 Modelling K by PLS 

Percentage of K variance explained using: 
Dimension of 
PLS model 11 variables 31 variables 

1 
2 
3 

78.6 
92.9 
94.9 

78.7 
90.4 
95.1 

PC4 

m A 

7 3  

a 
a. 

a 

0 a 
0 
0 

0 
A 

O O  

CIA 

o +  

PC1 

Fig. 2 Principal componen. s plot calculated from the 11 parameter 
set. Symbols as in Fig. 1. 

ti = 0.191 PC1 + 0.193 PC4 + 0.453 ( 5 )  
RZ = 0.732 F = 43.77 SE = 0.24 

K = 0.191 PC1 + 0.193 PC4 + 0.130 PC5 + 0.453 (6)  
R2 = 0.814 F = 45.22 SE = 0.20 

N = 35 for all three equations, and the t statistics for 
individual regression coefficients are all significant at greater 
than the 1% level. 

A plot of the principal component scores for the first two 
components included in the PC regression (PC1 and 4) shows a 
similar grouping of substituents (Fig. 2) to the non-linear map. 
It is interesting to note that the more ‘important’ principal 
components 2 and 3 are not involved in the two- or three-term 
regression equations. Although these components are required 
to explain the variance in the independent set, it is clear that this 
variance is not correlated with ti values. It is also of interest to 

0.48 -0.37 
-0.32 0.67 0.40 

-0.51 0.39 
0.42 

0.36 -0.36 
- 0.24 

- 0.34 - 0.42 
-0.39 0.40 

” For simplicity, only loadings above 0.3 are shown apart from Sn(1) in 
LV 1 for comparison with PC 1. 

see that the third term to be included in the regression is a 
component which has two ‘bulk’ terms (P1 and P3), 
nucleophilic superdelocalizability [Sn( 1)J and the magnitude of 
the dipole moment. 

A related technique to principal components regression is 
partial least squares (PLS) which combines the generation of 
principal components, known as latent variables, with 
regression on a dependent variable or set of variables.34 The 
latent variables are calculated so as to maximise their correl- 
ation with the dependent variable with the provision that latent 
variables, like principal components, explain as much variance 
in the independent set as possible and are orthogonal to one 
another. Application of PLS to the selected data set of 11 
variables resulted in the explanation of over 90% of the variance 
in the dependent data (K) using a two-dimensional PLS model 
as shown in Table 5. This table shows that the addition of a third 
PLS dimension, equivalent to a third principal component, only 
improves the description of the ti data by 2% and thus would 
not be considered necessary. In this example, PLS has per- 
formed better than principal components regression although, 
of course, it should since the PLS latent variables are chosen so 
as to have high correlations with the dependent data. One of the 
features of the PLS technique is that it is claimed to be able to 
cope well with data sets which contain redundant information. 
A PLS analysis was also carried out on the de-correlated data 
set of 31 parameters giving very similar results, shown in Table 
5, which demonstrates that this claim is justified, for this data set 
at least. 

How do the PLS latent variables compare to the principal 
components ? Table 6 shows the loadings of the independent 
variables on the first three PLS latent variables (LV). It can be 
seen that the first LV has much similarity to the first principal 
component; the variables with high loadings on this LV 
correspond to the highly loaded variables on PC 1. They have 
coefficients with the same sign and mostly identical values, the 
major difference between this latent variable and the principal 
component is the addition of ClogP. Interestingly, ClogP loads 
on to PC 2, which was not included in the regression on PCs, 
and PC 4 which was. The second latent variable corresponds 
most closely to the second principal component except that the 
sign of the ClogP coefficient is changed. These similarities and 
differences highlight one of the major disadvantages of these 
‘latent variable’ * techniques, the difficulty of interpretation. 
This is of little importance if all that is required is prediction, but 

* This includes principal components analysis which is also often 
referred to as a latent variable approach. 
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Table 7 Predicted and measured K values for three new substituents 

K values 

Substituent Measured” PLSb PCRc MLRd MLR‘ 

OCH(Me), 0.51 0.288 0.25 0.24 0.67 
OC6H, 0.43 0.297 0.45 0.23 0.76 
OCH,C6H, 0.60 0.56 0.38 0.55 1.14 

From ref. 36. From the two dimensional PLS model. PC regression 
from eqn. (6). Variable regression from eqn. (8). ‘ Variable regression 
from eqn. (9). 

if information concerning mechanism is desired then other 
methods may be more informative. 

Application of stepwise regression to the 1 1  parameter set 
yielded the following relationships: 

K = 0.03 CMR - 0.82 

R2 = 0.43 F = 24.69 SE = 0.34 
(7) 

K = 0.04 CMR - 0.34 ClOgP - 0.47 (8) 
R2 = 0.91 F = 166.1 SE = 0.14 

K = 0.05 CMR - 0.35 ClOgP + 0.09 + 0.53 (9) 

R2 = 0.95 F = 182.24 SE = 0.11 

Once again, N = 35 for all three equations and the I statistics 
for individual regression coefficients are significant at greater 
than the 1% level. A further term can be included in this forward 
stepping regression, P3, which lowers the standard error slightly 
to 0.098 and raises the multiple correlation coefficient to 0.96. 
Although this term is statistically ‘significant’ it appears to offer 
little improvement to the description of K .  These regression 
equations appear to offer a better fit to the K data than the two- 
and three-term principal component regressions, eqns. ( 5 )  and 
(6), and, of course, are simpler to interpret. 

Eqns. (8) and (9) are very similar, at least with respect to the 
CMR and ClogP terms, to the correlation equations previously 
reported for ic, as shown below, eqns. (10) and (1 1). 

K = 0.05 MR - 0 . 3 6 ~  + 0.02 
R2 = 0.93 F = 77.41 SE = 0.12 

(10) 

ic = 0.04 MR - 0.337~ - 0.21 R + 0.0 (11) 
R 2  = 0.95 F = 76.74 SE = 0.10 

These regression equations were based on tabulated values of 
substituent constants and R is the positionally weighted Swain 
and Lupton component of An interesting feature of these 
equations and eqns. (7)-(9) is that an electronic term does not 
become involved until after the bulk and partition coefficient 
based descriptors. Thus, it might appear that the popular view 
that charge-transfer complexes involve primarily electronic 
effects is not correct. However, this observation perhaps serves 
to illustrate the problem of the separation of steric, volume and 
‘bulk’ effects. Whilst MR is correlated with other steric 
 parameter^,^^ it is also related to p~lar izabi l i ty .~~ Perhaps the 
electronic terms included in the principal component 
regressions and the PLS treatment are also serving as measures 
of polarizability. 

Encouragingly, these analytical methods all appear to be 
giving similar results in their description of the K data, but how 
well do they predict? A further three substituent K values have 
become available 36 since the original measurements were 
reported. These are shown in Table 7 together with predicted 

values derived from the principal components regression, eqn. 
(6), the two-dimensional PLS model and the multiple regres- 
sions on individual variables, eqns. (8) and (9). Predictions for 
the isopropoxy substituent are poor by all methods; the three- 
term variable regression equation does perhaps the best job but 
this gives overpredicted results for the other two substituents. 
The phenoxy substituent is best predicted by the principal 
components regression, eqn. (6), and the benzyloxy substituent 
is well predicted by both the PLS model and the two-term 
variable regression. From these results it is difficult to say that 
any one method is ‘best’; principal components regression might 
be said to be giving the best overall results but the differences 
between the techniques are small. The fact that the PLS method 
does not make the best predictions is surprising since PLS latent 
variables are generated in such a way that correlations with the 
dependent variable are maximized. The PLS predictions, in fact, 
are little better than the variable regression predictions and the 
variable regressions are much easier to interpret. The results of 
the predictions from these two- and three-term regression 
equations demonstrate an important feature of how such 
models should be assessed. The statistics ( R 2 ,  F, SE etc.) for the 
three-term equation are all ‘significant’ and appear better than 
those of the two-term equation and yet the three-term predic- 
tions are worse. This may be a feature of this particular 
combination of compounds in the ‘training’ and ‘test’ sets, but 
this is a good example of a ‘real’ situation. 

Conclusions 
It has been shown that substituent constant values from a 
simple chemical model system may be described using para- 
meters calculated by computational chemistry methods. This 
provides encouragement in the use of these techniques in 
attempts to model the effects of candidate drug molecules in 
biological systems. However, in agreement with an earlier 
analysis, the most important descriptors were shown to be 
calculated values of log P and molar refraction, two parameters 
which have been widely used in the ‘traditional’ QSAR 
approach. This perhaps serves to illustrate the fundamental 
importance of these properties or to indicate the utility of the 
mix of factors which make up these parameters. It also implies 
that the major contribution to the forces which stabilize these 
complexes is not electronic, contrary to popular opinion, unless 
it is the electronic components of log P and, more likely, MR 
which provide the correlation with ic. One way in which the 
computed descriptors might be improved would be to carry 
out the modelling calculations on complexes. This might serve 
as a better model of the EDA system but it is unlikely that 
this could be generally applied to biological systems since we 
often have little idea of the nature of the site of action of a 
drug. 

Analysis of these data has provided an opportunity to 
compare several statistical methods. Unsupervised techniques 
such as PCA and non-linear mapping have shown that the 
physicochemical data can be used to group similar substituents 
together and, in part, to order substituents according to their K 

values. PLS has been shown to describe the variance of the K 

data in a smaller number of latent variables than principal 
components regression and comparisons between latent vari- 
ables and principal components have been made. Multiple 
linear regression gave a better statistical fit than principal 
components regression and, of course, is easier to interpret. 
However, it is not possible clearly to identify a best technique 
since some of the predictions for ‘test set’ substituents are poor. 
This demonstrates that multivariate models should be evalu- 
ated by their performance in prediction as well as the statistics of 
their fit. Finally, the results show the complementary nature of 
these analytical methods. 
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